
1 
 

Baseline microbiome composition impacts resilience to and recovery following antibiotics 

 

Chia-Yu Chen1, 2, 3, 4, 9, Ulrike Löber1, 2, 3, 4, Hendrik Bartolomaeus1, 3, 4, 5, Lisa Maier7, 8, 10, 
Dominik N. Müller1, 2, 3, 4, Nicola Wilck1, 3, 4, 5, Víctor Hugo Jarquín-Díaz1, 2, 3*, Sofia K. 
Forslund-Startceva1, 2, 3, 4, 6* 

*Co-last authors 

1Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 
Berlin, Germany. 2Charité - Universitätsmedizin Berlin, corporate member of Freie Universität 
Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany. 3Experimental and 
Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine 
and Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany. 4DZHK (German Centre for 
Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany. 5Department of 
Nephrology and Internal Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 
Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 
Germany. 6Structural and Computational Biology Unit, European Molecular Biology 
Laboratory, 69117 Heidelberg, Germany. 7Interfaculty Institute of Microbiology and Infection 
Medicine, University of Tübingen, Tübingen, Germany. 8Cluster of Excellence ‘Controlling 
Microbes to Fight Infections’, University of Tübingen, Tübingen, Germany. 9Department of 
Biology, Duke University, Durham, NC 27708, USA. 10M3 Research Center, University of 
Tübingen, Tübingen, Germany. 
 
 
The gut microbiome of healthy individuals naturally undergoes temporal changes linked 
to the dynamics of its community components1. These dynamics are only observable in 
longitudinal studies; they are particularly relevant to understanding ecosystem responses 
to external environment disturbances. External exposures, such as antibiotic treatment, 
significantly reshape the gut microbiome, impacting both pathogen and commensal 
microbes2. The gut microbiome plays pivotal roles in digestion, nutrient absorption, and 
mental health, influencing immune systems, obesity, and various diseases3-6. 
Consequently, beyond the short-term effects on the host gut microbiome dynamics, 
alterations resulting from antibiotic exposure also have enduring repercussions on 
human health and physiological equilibrium7. Therefore, enhancing gut microbiome 
resilience during antibiotic treatment is essential, with the goal of mitigating prolonged 
adverse effects. Here, we explored the impact of pre-antibiotic microbial and functional 
profiles on resilience, suggesting that specific baseline features exhibit greater resilience 
to antibiotics-induced changes. Our results identified an uncultured Faecalibacterium 
prausnitzii taxon as a species at baseline associated with diminished resilience. We 
demonstrated that this association could be linked to the role of this F. prausnitzii taxon 
as a keystone species. Additionally, we observed the influence of other commensal 
bacteria, such as Bifidobacterium animalis and Lactobacillus acidophilus, as well as 
functional modules, such as multidrug resistance efflux pump, on resilience. This lays the 
foundations for designing targeted strategies to promote a resilient gut microbiome 
before antibiotic treatment, alleviating possible prolonged effects on human health. 
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Antibiotics are known to disrupt the balance of the gut microbiome and induce long-term 
microbiome alterations, often termed dysbiosis in the literature. Altered microbiome 
compositions have been linked to various health conditions like inflammatory bowel disease, 
obesity, and cardiovascular disease, especially the loss of producers of beneficial metabolites 
like short-chain fatty acids (SCFAs)8,9. SCFAs play a beneficial role in health maintenance and 
disease development by interacting with the host immune system10. Post-antibiotic dysbiosis 
is characterized by diminished microbial diversity, the absence of crucial taxa, and metabolic 
shifts11. Even brief antibiotic usage, especially in early childhood, can induce lasting changes 
in the gut microbiome12. Probiotic consumption alongside or following antibiotic treatment has 
been proposed to alleviate antibiotic-induced disruptions. However, the existing literature lacks 
a consensus, presenting conflicting results13-17. Recognizing the profound effects of antibiotics 
on the gut microbiome is crucial to understanding the factors influencing resilience to mitigate 
long-term consequences and maintain overall host health. 
 
Resilience encompasses two aspects: resistance, the ability to withstand changes upon external 
exposure, and recovery, the rate or time to revert to the original state (Figure 1A)18. Factors 
influencing resilience include host immune status, microbiome diversity, and functional 
redundancy19. Functional redundancy illustrates that diverse organisms across different taxa 
perform the same functional role in the ecosystem20. High functional redundancy indicates that 
altering species diversity may have a limited effect on overall ecosystem functionality21. Here, 
we hypothesize that the microbial or functional composition before antibiotic treatment plays 
a pivotal role in resilience. 
 
To test whether the effect of antibiotics and the recovery rate were associated, we introduced 
the term "fragility index" (FI). The FI reflects how vulnerable a microbial community is during 
exposure to external disruptions (Figure 1B). The FI is computed as follows: 
 

𝐹𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑡𝑖𝑚𝑒 × 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑢𝑝𝑜𝑛	𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 
 
We assessed the estimated recovered time to the time in which the Bray-Curtis distance is the 
closest to zero against the baseline22. The dissimilarity upon recovery corresponds to the Bray-
Curtis distance between the baseline and the estimated recovered time. The FI depends on the 
resistance and the recovery aspects; a higher fragility index indicates a less resilient microbial 
community when exposed to external perturbations. Henceforth, we refer to "resistance" as the 
"scale of perturbation”, defined as the Bray-Curtis distance between before and after the 
antibiotic treatment. In this study, we first examined the contrast in microbial community 
dynamics between unperturbed states and perturbation caused by antibiotic intervention. 
Subsequently, we tested the hypothesis that microbial or functional profiles are crucial in 
determining resilience. 
 
To quantify the microbial perturbation induced by antibiotics compared with unperturbed 
microbial community dynamics in healthy human individuals, we collected, reanalyzed, and 
compared published datasets. Our study incorporated a total of four datasets. Two datasets, 
from Voigt et al.23 (hereafter Voigt) and the Human Microbiome Project Healthy Human 
Subjects24 (hereafter HMP-HHS), correspond to healthy human cohorts tracked for temporal 
variation in their gut microbiome. The other two datasets, from Palleja et al.25 (hereafter Palleja) 
and Suez et al.13 (hereafter Suez), correspond to antibiotic intervention studies (Figure 1C). In 
the Voigt study, only one participant was under antibiotic treatment. The subject, referred to as 
“Alien”,  received ceftriaxone for four days due to infection and was segregated from other 
participants for the analysis. The Palleja and Suez studies involved healthy human cohorts 
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treated with antibiotics for four and seven days, respectively. Both studies used a cocktail of 
broad-spectrum antibiotics and vancomycin (Extended Table 1). The antibiotic combinations 
ensure comparability and suitability for a combined analysis. The Palleja and Suez studies lack 
continuous (day-by-day) taxonomic and functional abundance data. Therefore, we employed 
natural cubic spline interpolation to estimate taxonomic and functional abundances at the 
missing time points and then calculate the estimated recovered time26. Moreover, the Palleja 
and Suez studies have different intervention and follow-up time points. While the Suez study 
has a longer antibiotic intervention duration, the Palleja study has more extended follow-up 
time points. Hence, their respective time points were realigned to ensure comparability in the 
estimated recovery time between both studies (Figure 1D).  
 
To assess the impact of antibiotics on the microbial community in comparison with the natural 
dynamics of a healthy microbiota, we computed the Bray-Curtis distance between each time 
point and the baseline for all individuals (Figure 2A, Extended Figure 1A). We employed 
polynomial regression to model the Bray-Curtis dissimilarity over time for antibiotic-treated 
and non-treated individuals. In the non-treated group, a shift occurred, reaching stability and 
forming a plateau around 0.4 over time (Figure 2B, Extended Figure 1B). For the antibiotic-
treated group, the Bray-Curtis distance increased to 0.8 following antibiotic exposure and 
gradually returned to a level similar to that of the non-treated group. Notably, from day 300 to 
400, the antibiotic-treated group's distance from the baseline showed no significant difference 
compared with the non-treated group, as indicated by overlapping confidence intervals. This 
shows that antibiotic exposure induced a perturbation in the gut microbiota, reaching about 
twice the scale of the shift in healthy individuals, and eventually returning to a level similar to 
the non-treated group during recovery. We observed a significant correlation between the 
fragility index and the scale of perturbation based on both taxonomic (genus, Spearman’s 
correlation p < 0.05, rho = 0.49) and functional (KEGG module, Spearman’s correlation p < 
0.05, rho = 0.49) profiles (Figure 2C, 2D). This indicates that the scale of perturbation serves 
as a suitable proxy for the fragility index, and, in turn, is associated with overall resilience. 
Moreover, the scales of perturbation between taxa and functional profiles are correlated 
(Extended Figures 1C, 1D). 
 
Next, our aim was to characterize the microbiome and functional profiles that are resilient upon 
antibiotic perturbation. First, we discovered a negative correlation (Spearman’s p < 0.01, rho 
= -0.64) between functional redundancy and the scale of perturbation (Figure 3A). Then, we 
applied the Random Forest (RF) method, an ensemble learning technique that combines 
independently sampled decision trees to improve model robustness and generalization 
performance27. Utilizing RF regression models, we tested which microbial and functional 
features were linked to antibiotic perturbation and detected an uncultured F. prausnitzii as the 
most relevant predictor (Spearman’s rho = 0.6, Figure 3B). Our RF results were validated by 
correlation to leave-one-out cross-validation (LOOCV) (Extended Figure 2).  In contrast, 
baseline Shannon diversity and the baseline abundance of Blautia sp., Ruminococcus sp. CAG 
254, Prevotella sp. CAG 520, L. acidophilus, and B. animalis are negatively correlated with 
the scale of perturbation (Spearman’s rhos < -0.53, Figure 3B). At the genus level (Figure 3B 
column 2), baseline Shannon diversity (Spearman’s rho = -0.56) and the abundance of 
Dehalococcoidales gen. incertae sedis (Spearman’s rho = -0.56) are significantly and 
negatively correlated with the scale of perturbation. We built a second RF model to predict the 
scale of perturbation based on the baseline functional profile, including KEGG modules and 
gut metabolic modules (GMMs) (Figure 3B columns 3, 4)28,29. We found that multidrug 
resistance efflux pumps (KEGG M00645 and M00700) are among the most influential ones, 
contributing to functional stability. Given the relevance of a known butyrate producer like F. 
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prausnitzii to predict the scale of perturbation30, it is interesting to detect that the baseline 
abundance of modules associated with the production of this SCFA like 4-aminobutyrate 
degradation (GMM MF0042) and crotonyl-coA from succinate (GMM MF0115) negatively 
correlated with the scale of perturbation31. We observed that Bifidobacterium, Lactobacillus, 
and MF0042 are consistent features across different models (Figure 3B, all columns). Specific 
functions, for example, multidrug resistance efflux pumps M00646 and M00647 in Figure 3B 
column 5 show positive correlations with the scale of perturbation, while M00645 and M00700 
in Figure 3B column 3 exhibit a negative correlation. It is important to recognize that, although 
classified as multidrug resistance efflux pumps, these systems can exhibit inherent differences 
in their composition and functional mechanisms32. When we test which taxonomic or 
functional features are the best predictors of the FI, our model identified fewer significant 
correlations, as shown in Extended Figures 3 and 4 (e.g., only six features showed correlation 
significance in Extended Figure 3). 
 
In addition to the uncultured F. prausnitzii taxon, other recognized SCFA producers like B. 
animalis, L. acidophilus, Blautia spp., and Ruminococcus sp. CAG 254 were identified as 
relevant taxonomic features to predict the effect of antibiotic perturbation33,34. We concluded 
that the majority of SCFA-producing species at baseline play a protective role in preserving 
microbial communities against extensive perturbation induced by antibiotic treatment. Based 
on the relevance of uncultured F. prausnitzii in our models, we speculated about its potential 
role as a keystone species within the microbial community. A keystone species exerts a 
disproportionately significant influence on the other community members relative to its 
abundance35. To test whether the uncultured F. prausnitzii has a significant role in the microbial 
community, we constructed a co-occurrence network based on significant taxa-taxa 
correlations (Spearman’s correlations, Benjamini-Hochberg corrected q < 0.1) (Extended 
Figure 5) and used centrality measures to characterize the relevance of this taxon. In network 
analyses, nodes with elevated betweenness centrality (i.e., the frequency of a node acting as a 
bridge along the shortest path between two other nodes) may signify key connectors, while 
nodes with high node degrees (i.e., the number of connections a node has to other nodes) may 
represent hubs36. Both high betweenness centrality and node degree serve as indicators for 
potential keystone species. We observed that uncultured F. prausnitzii possessed the highest 
network betweenness centrality (Figure 4A), confirmed by an alternative method (Extended 
Figures 6A, 6B). We observed a depletion of the uncultured F. prausnitzii after the antibiotic 
treatment (Spearman’s correlation p < 0.01, rho = -0.78) and a decrease in the abundances of 
all its associated taxa (n=14) based on the network analysis (Extended Figure 5) (Spearman’s 
correlations, Benjamini-Hochberg corrected q < 0.05, rho values between -0.40 ~ -0.69). We 
suggest that the decline in uncultured F. prausnitzii during antibiotic treatment is linked to the 
reduction of other associated species, consistent with a role as a keystone species. 
 
The uncultured F. prausnitzii taxon corresponds to two metagenomic Operational Taxonomic 
Units (mOTUs), ref-mOTU-v25-06108 (hereafter referred to as F. prausnitzii 06108) and ref-
mOTU-v25-06110 (hereafter referred to as F. prausnitzii 06110). To discern the relevance of 
these mOTUs, we ran new RF regression models using baseline mOTUs (restricted to those 
associated with significant species in Figure 3 column 1) to predict the scale of perturbation. 
Notably, our results highlight F. prausnitzii 06108 as the foremost influential feature, 
positioning it as the most crucial predictor, while F. prausnitzii 06110 holds a lower rank (8th) 
in importance. We observed that the baseline abundance of F. prausnitzii 06108 positively 
correlated with the scale of perturbation, while its delta value (before/after antibiotics) 
negatively correlated with the scale of perturbation (Figure 4B, 4C). The latter suggests that an 
increased loss of F. prausnitzii 06108 post-antibiotics leads to a larger scale of perturbation. 
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Our findings propose that the depletion of F. prausnitzii 06108 during antibiotic treatment 
precipitates the loss of other associated species. Furthermore, we examined the variations in 
functional profiles within the two mOTUs, delineating their distinctions using KEGG modules, 
pathways, and BRITE, and identified several disparate functions (Extended Figures 7–9). For 
example, F. prausnitzii 06108 was exclusively correlated with KEGG modules such as 
cytochrome c oxidase, cytochrome bd ubiquinol oxidase and acylglycerol degradation, and 
KEGG pathways such as protein digestion and absorption. 
 
Our study explores the impact of antibiotics on the gut microbiome. Our results indicate that 
antibiotic-induced perturbation in the studied datasets is approximately twice the scale of 
natural drift in healthy individuals over the same time interval. Even in the absence of any 
external source of perturbation such as antibiotics, drift over time, as well as measurement 
variability, results in an average within-donor gut microbiome similarity over time of around 
0.4 Bray-Curtis distance. This is in agreement with previous findings in a study involving fecal 
samples from healthy Belgian women collected over 6 weeks, where within-individual Bray-
Curtis distances fell between 0.25 and 0.51. We detected a negative correlation between 
functional redundancy and the scale of perturbation, consistent with previous studies 
suggesting that high redundancy contributes to stable functioning in a microbiome community 
under external perturbation37. We found a positive correlation between functional redundancy 
and the extent of perturbation upon antibiotics exposure and established the fragility index as 
a proxy to comprehensively describe resilience in a microbiome context. When we explored 
the predictive potential of baseline microbiome abundance, we detected several commensal 
SCFA producers associated with the scale of perturbation. In particular, an F. prausnitzii taxon 
was anti-correlated with resilience, consistent with a keystone species role of this commensal, 
which we confirmed by co-occurrence network analysis, as previously reported38. Conversely, 
Blautia sp., Ruminococcus sp., L. acidophilus, and B. animalis at baseline were associated to 
higher resilience. The same applies to baseline Shannon diversity, in line with previous 
literature19. Lastly, several functional modules, including multidrug resistance efflux pumps 
and butyrate-producing pathways, emerged as predictors of the degree of community 
perturbation upon antibiotic exposure. 
 
Our findings complement the conventional notion of employing probiotics based on 
Bifidobacterium or Lactobacillus during or after antibiotics treatment to facilitate recovery, 
suggesting other potential candidates for supplementation post-antibiotics. Even within the 
same species, we found that different strains may impact community resilience differently. 
Future efforts will focus on validating the resilience-enhancing capabilities of SCFA producers 
through experimental studies. Our results suggest a potential role of probiotics before antibiotic 
treatment to fortify gut microbiome resilience, which future experiments should seek to 
validate.   
 
Methods  
Data acquisition. Raw metagenomic sequencing data from the Palleja25, Suez13, and Voigt23 
studies were acquired from the European Nucleotide Archive (ENA) database, using the 
accession numbers ERP022986, PRJEB28097, and ERP009422, respectively. Metadata for 
these studies was obtained from the corresponding publications. For the HMP-HHS study24, 
sequencing data were obtained from the Human Microbiome Project (HMP) portal at 
https://portal.hmpdacc.org/projects/t. The metadata for this study were controlled-access and 
were retrieved from the database of Genotypes and Phenotypes (dbGaP). The individuals in 
the HMP_HHS study who had taken antibiotics were excluded from our analysis. 
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Shotgun metagenomic processing. The metagenomic shotgun sequences were subjected to 
processing using NGLess v1.339. Reads underwent quality filtering, with a minimum read 
length of 45 bp and a minimum Phred quality score of 25. Sequences meeting these criteria 
were subsequently mapped to the human genome (adapted from hg38), with a minimum 
requirement of a 45 bp match and at least 90% identity, and those mapping to the human 
genome were filtered out. Taxonomic classification was determined by aligning the non-human 
reads to metagenomic Operational Taxonomic Units (mOTUs v2.5)40 using bwa with default 
parameters.  Functional profiling was done by aligning non-human reads to the Global 
Microbial Gene Catalog (GMGC v1.0)41. Instances where reads mapped to multiple genes in 
the reference database were addressed utilizing the "all1" method. Next, the GMGC IDs were 
binned into KEGG KOs28, and then further into KEGG modules or gut metabolic modules 
(GMM)29. To mitigate the impact of differences in sequencing depth in downstream analysis, 
rarefaction on abundance tables was performed using RTK tool v0.93.142. 
 
Abundance interpolation. To obtain continuous data (i.e., data for every single day) from the 
discrete raw data, natural cubic spline interpolation was employed for both taxonomic and 
functional abundance data26,43. This technique was utilized to estimate abundances at missing 
time points by constructing piece wise third-order (cubic) polynomials that pass through the 
known data points. The spline interpolation was performed using the R function 
splinefun(method = "natural"). 
 
Timepoint realignment. To ensure uniformity in the estimated recovery time between the 
Suez and Palleja studies, their respective time points underwent realignment. Day 0 in Palleja 
and day 6 in Suez were designated as the baseline. Day 4 in Palleja and day 13 in Suez were 
regarded as the final days of intervention. Ultimately, follow-up time points were extended up 
to day 60 in Palleja to generate estimates of recovery time that align with the time frame of 
Suez. 
 
Alpha and beta diversities analysis. Both Shannon diversity and Bray-Curtis distance were 
calculated using the vegan v2.5 R package44. The rarefied abundance table at both the species 
and genus levels was utilized for Bray-Curtis distance computation.  
 
Functional redundancy. To assess functional redundancy, characterized by the presence of 
multiple species-specific variants within gene families, the following method was employed. 
A Shannon metric was computed for each individual based on the GMGC profiles 
corresponding to each gene family (e.g., KEGG KO). This calculation was conducted 
independently for each gene family. Subsequently, the average Shannon metric was determined 
by aggregating the values across all gene families for each individual. 
 
Correlation analysis. Spearman’s correlation tests were done using the R basic function 
cor.test(method = “spearman”). These included the correlation between taxonomic or 
functional profile abundances and scale of perturbation or fragility index, as well as all other 
instances in the figures that explicitly specified Spearman’s correlation test. Benjamini-
Hochberg correction of the p values was done using the function p.adjust(method = “fdr”) in 
base R. 
 
Random forest regression. Random forest regression was carried out using the Python 
machine-learning package scikit-learn45. First, the out-of-bag error (OOB error) was employed 
to select optimal hyperparameters, including the maximum number of features, maximum 
depth, and number of estimators. Subsequently, two separate evaluations were conducted: one 
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using 5-fold cross-validation and the other using leave-one-out cross-validation (LOOCV). The 
evaluation metric for both procedures was negative mean absolute error (negative MAE)46. 
Following this, permutation (n = 1000) was performed by randomly shifting the dependent 
variable against the independent variables, and all resulting negative MAEs were recorded. The 
distribution of these permutated negative MAEs was analyzed to assess the overall 
performance of the random forest regression. 
 
Keystone species analysis. Spearman's correlations were computed for all species using R. 
Subsequently, only the statistically significant correlations (Benjamini-Hochberg corrected q 
< 0.1) were employed in constructing a co-occurrence network. The betweenness centrality 
and node degree were then calculated. Cytoscape v3.9.147 was employed for network 
construction, visualization, and the computation of betweenness centrality and node degree. 
Additionally, for independent validation, the cooccur R package48, which applies the 
probabilistic model to assess species co-occurrence, was also employed. 
 
Linking functional profiles to specific mOTUs for the uncultured F. prausnitzii taxon. 
From the mOTU v2.5 database, the uncultured F. prausnitzii fraction comprises two mOTUs, 
namely ref_mOTU_v25_06108 and ref_mOTU_v25_06110. Genomic data and GMGC 
profiling for the uncultured F. prausnitzii were extracted, and GMGC IDs with low abundance 
(sum across samples < 7) were filtered out. Spearman correlation analyses were then conducted 
between the abundances of the two target F. prausnitzii mOTUs and each GMGC ID, followed 
by Benjamini-Hochberg (BH) correction. Correlations between GMGC and mOTUs were 
filtered based on significance (q < 0.05). GMGC IDs were binned into KEGG modules, 
pathways, or BRITEs categories using the KEGG database (https://www.kegg.jp). NA values, 
indicating no significant correlation of GMGC belonging to a KEGG module, pathway, or 
BRITE with one mOTU (but significant correlation with the other), were replaced with 0. The 
focus was on positive correlations between GMGC and mOTUs, excluding negative 
correlations, to identify co-abundant mOTUs and genes within the context of the observed 
uncultured F. prausnitzii taxon. 
 
Visualization. Figures were generated using ggplot2 v3.3.549 and the ggpubr v0.4.0 
(https://cran.r-project.org/package=ggpubr) R packages 
(https://rdocumentation.org/packages/ggpubr/). Smooth curves in Figures 2A and 2B are local 
polynomial regressions fitted by using the function ggplot2::geom_smooth(method = “loess”). 
In Figures 2C, 2D, 3A, 4B, and 4C, as well as Extended Figures 1C and 1D, the smooth lines 
were derived from linear regression and fitted using ggplot2::geom_smooth(method = "lm"). 
 
Data availability 
For raw sequencing files, please see “data acquisition” in Methods section. Processed data are 
available at https://github.com/CCY-dev/Microbiome_resilience_data_code. 
 
Code availability 
Scripts are available at https://github.com/CCY-dev/Microbiome_resilience_data_code. 
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Figure 1. Study concept and design. (A) The illustration shows the concept of resistance and 
resilience upon antibiotics treatment. Resilience is represented as how much a microbial community 
change compared with its original state after the antibiotics perturbation, while recovery can be 
measured by how much the post-perturbation state resembles the initial state. (B) The figure shows the 
components of the fragility index, which includes the scale of perturbation, estimated recovered time 
and dissimilarity upon recovery. B-C is the abbreviation of Bray-Curtis. (C) The data included in this 
study are illustrated. The sample size of each study is as follows. Voigt (n = 7, including the subject 
“Alien”); HMP-HHS (n = 55); Palleja (n = 12); Suez before antibiotics treatment (n = 21); Suez after 
antibiotics treatment (n = 16). The discrepancy between the sample size of Suez before/after antibiotics 
is because some of the individuals underwent further post-antibiotics intervention (i.e., probiotics 
supplement or autologous fecal transplant) and were excluded here. (D) The illustration shows the 
alignment of time points between the Palleja and the Suez studies. Day 0 in the Palleja and day 6 in the 
Suez studies are taken as the baseline. Day 4 in the Palleja and day 13 in the Suez studies are the last 
day of intervention. The Palleja study is curtailed to day 60 so that its recovery duration is the same as 
that of Suez (56 days). 
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Figure 2. Gut microbiome shift is larger in antibiotics-treated group, and the scale of 
perturbation is correlated with the fragility index. (A, B) The line plots show the microbiome 
dissimilarity (Bray-Curtis distance) at species level between the baseline and each time point at 
subsequent days. Samples are grouped by (A) different data source, which are 
Alien_before_antibiotics (n = 1), Alien_after_antibiotics (n = 1), HMP-HHS (n = 55), Palleja (n = 
12), Suez_before_antibiotics (n = 21), Suez_after_antibiotics (n = 16) and Voigt (n = 6), or (B) 
different treatment, which are non-treated (n = 83) and antibiotics-treated (n = 29). Smooth curves 
(dashed lines) were fitted to show the overall pattern in each group. Transparent shades indicate 
95% confidence interval. The discrepancy between the sample size of Suez before/after antibiotics 
is because some of the individuals underwent further post-antibiotics intervention (i.e., probiotics 
supplement or autologous fecal transplant) and were excluded here. In (B), the significance of 
treatment was shown by a linear model fitting the microbiome dissimilarity as a function of 
treatment*day(square rooted). P-values for treatment and the interaction term treatment:day were 
both < 0.001 (C, D) Scatter plots showing the correlation between the perturbation scale and the 
fragility index are based on (C) microbial genus and (D) KEGG modules. Spearman’s correlation 
test results are annotated on the plots. The orange solid lines are the linear regression fitted to the 
points to show the overall trend. 
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Figure 3. Characterization of the resilient microbiome and functional profile (A) The scatter 
plot shows the correlation between baseline functional redundancy and the microbiome 
dissimilarity (Bray-Curtis distance) of the gut microbiome at genus level between the baseline and 
post-antibiotics treatment. The functional redundancy is calculated as the Shannon diversity of the 
species-specific variants (GMGC) within each gene family (KEGG KO). Spearman’s correlation 
test’s p-value and rho of are shown in the figure. The orange solid line is the linear regression fitted 
to the points to show the overall trend. (B) This heatmap shows the result of RF regression fitting 
the scale of perturbation. The random forest models were trained using 5-fold cross-validation. 
Each column represents the scale of perturbation based on one feature predicted by the other 
baseline feature. RF significance is based on the permutation (n = 1000) result, where the negative 
MAE of each RF is compared to the permutated negative MAE. If a negative MAE is larger than > 
95 % of the permutated values, then it is regarded as significant (p < 0.05).  Colors represent 
Spearman’s correlation between the feature with the scale of perturbation. Text below the feature 
name is the Spearman’s rho value. Asterisks and bold texts denote that Spearman’s correlation q 
< 0.1. Benjamini-Hochberg procedure was used to adjust the p values within each column (n = 
10).  
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Figure 4. Uncultured F. prausnitzii taxon as a keystone species (A) The scatter plot shows 
the betweenness centrality against node degree of each species, which is the result from co-
occurrence network analysis. (B, C) These figures plot the scale of perturbation against the (B) 
the abundance of F. prausnitzii 06108 at the baseline and (C) the difference in F. prausnitzii 
06108 abundance between before and after antibiotics treatment (after – before). Spearman’s 
correlation test’s p-value and rho of are shown in the figures. The orange solid lines are the 
linear regression fitted to the points to show the overall trend. 
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